Multi-PRI Signal Processing for the Terminal Doppler Weather Radar. Part I: Clutter Filtering
نویسندگان
چکیده
Multiple pulse repetition interval (multi-PRI) transmission is part of an adaptive signal transmission and processing algorithm being developed to aggressively combat range–velocity ambiguity in weather radars. In the past, operational use of multi-PRI pulse trains has been hampered due to the difficulty in clutter filtering. This paper presents finite impulse response clutter filter designs for multi-PRI signals with excellent magnitude and phase responses. These filters provide strong suppression for use on low-elevation scans and yield low biases of velocity estimates so that accurate velocity dealiasing is possible. Specifically, the filters are designed for use in the Terminal Doppler Weather Radar (TDWR) and are shown to meet base data bias requirements equivalent to the Federal Aviation Administration’s specifications for the current TDWR clutter filters. Also an adaptive filter selection algorithm is proposed that bases its decision on clutter power estimated during an initial long-PRI surveillance scan. Simulations show that this adaptive algorithm yields satisfactory biases for reflectivity, velocity, and spectral width. Implementation of such a scheme would enable automatic elimination of anomalous propagation signals and constant adjustment to evolving ground clutter conditions, an improvement over the current TDWR clutter filtering system.
منابع مشابه
Multi-PRI Signal Processing for the Terminal Doppler Weather Radar. Part II: Range–Velocity Ambiguity Mitigation
Multiple pulse-repetition interval (multi-PRI) transmission is part of an adaptive signal transmission and processing algorithm being developed to combat range–velocity (RV) ambiguity for the Terminal Doppler Weather Radar (TDWR). In Part I of this two-part paper, an adaptive clutter filtering procedure that yields low biases in the moments estimates was presented. In this part, algorithms for ...
متن کاملFiltering of Volume Clutter in Pulse Surveillance Radar using Discrete Wavelet Transform
Moving weather systems will have a nonzero Doppler response at rate at which the rain droplets are approaching the radar system. The complete data the radar collects contain the returns of both the target and the clutter. The signal processing block in a radar system uses filtering operations to extract the target information while suppressing the clutter. Typically the filters are designed bas...
متن کاملAdaptation of Rejection Algorithms for a Radar Clutter
In this paper, the algorithms for adaptive rejection of a radar clutter are synthesized for the case of a priori unknown spectral-correlation characteristics at wobbulation of a repetition period of the radar signal. The synthesis of algorithms for the non-recursive adaptive rejection filter (ARF) of a given order is reduced to determination of the vector of weighting coefficients, which realiz...
متن کاملClutter Mitigation Techniques For Doppler Weather Radar For Fine Grain Velocity Estimation
Weather Radars provide valuable information on various weather phenomenon such as rain, hail, storm, etc that are increasingly become important in today’s scenario where disaster management has got a wider role to play. But due to the way a radar works, not only precipitation but also unwanted echoes ,that we broadly classify as clutter , which includes returns from land, sea waves, birds, inse...
متن کامل